Nonautonomous saddle-Node bifurcations in the Quasiperiodically Forced logistic Map
نویسندگان
چکیده
We provide a local saddle-node bifurcation result for quasiperiodically forced interval maps. As an application, we give a rigorous description of saddle-node bifurcations of 3-periodic graphs in the quasiperiodically forced logistic map with small forcing amplitude. 2000 Mathematics Subject Classification.
منابع مشابه
Strange Nonchaotic Attractors in the Quasiperiodically forced Logistic Map
Different mechanisms for the creation of strange non-chaotic dynamics in the quasiperiodically forced logistic map are studied. These routes to strange nonchaos are characterised through the behavior of the largest nontrivial Lyapunov exponent, as well as through the characteristic distributions of finite time Lyapunov exponents. Strange nonchaotic attractors can be created at a saddle–node bif...
متن کاملThe creation of strange non-chaotic attractors in non-smooth saddle-node bifurcations
We propose a general mechanism by which strange non-chaotic attractors (SNA) can be created during the collision of invariant tori in quasiperiodically forced systems, and then describe rigorously how this mechanism is implemented in certain parameter families of quasiperiodically forced interval maps. In these families a stable and an unstable invariant circle undergo a saddle-node bifurcation...
متن کاملMechanism for the intermittent route to strange nonchaotic attractors.
Intermittent strange nonchaotic attractors (SNAs) appear typically in quasiperiodically forced period-doubling systems. As a representative model, we consider the quasiperiodically forced logistic map and investigate the mechanism for the intermittent route to SNAs using rational approximations to the quasiperiodic forcing. It is found that a smooth torus transforms into an intermittent SNA via...
متن کاملIntermittency in families of unimodal maps
We consider intermittency in one parameter families of unimodal maps, induced by saddle node and boundary crisis bifurcations. In these bifurcations a periodic orbit or a periodic interval, respectively, disappears to give rise to chaotic bursts. We prove asymptotic formulae for the frequency with which orbits visit the region previously occupied by the attractor. For this, we extend results of...
متن کاملBifurcations and transitions in the quasiperiodically driven logistic map
We discuss several bifurcation phenomena that occur in the quasiperiodically driven logistic map. This system can have strange nonchaotic attractors (SNAs) in addition to chaotic and regular attractors; on SNAs the dynamics is aperiodic, but the largest Lyapunov exponent is nonpositive. There are a number of different transitions that occur here, from periodic attractors to SNAs, from SNAs to c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- I. J. Bifurcation and Chaos
دوره 21 شماره
صفحات -
تاریخ انتشار 2011